Contribution from the Department of Chemistry, Imperial College of Science and Technology, London SW7 2AY, United Kingdom

Spectroscopic Studies of Substituted Imidazole Complexes. IV. Complexes of Cobalt and Nickel with 2-(2'-pyridyl)benzimidazole and 2-(2'-pyridyl)imidazoline

D. M. L. Goodgame and A. A. S. C. Machado

Received September 24, 1971

The preparations are reported of a series of complexes of the type ML_3X_2 , where M = Co, Ni, or Zn and $L = 2 \cdot (2' - pyridyl) benzimidazole (PYB) or 2 \cdot (2' - pyri$ dyl)imidazoline (PYIM), and of the compounds M- $(PYB)_2X_2$ (M = Co, Ni; X = Cl, Br, I, NCS). All the cobalt and nickel complexes show normal, highspin magnetic properties. Electronic and low-frequency infrared spectra are reported and discussed. For the ML_3X_2 compounds v(M-N) bands are assigned in the region 200-300 cm^{-1} .

Introduction

We have recently shown^{1,2} that the iron(II) complexes FeL_3X_2 , L = 2-(2'pyridyl)benzimidazole (PYB,

I) and 2-(2'pyridyl)imidazoline (PYIM, II) are members of the interesting class of compounds showing spin-crossover behaviour. During this work we also prepared and studied a range of nickel and cobalt(II) complexes with these ligands to obtain further information about the ligand field properties and for comparison of their low frequency infrared spectra. A few of these compounds had been reported previously^{3,4} but physical studies were limited to potentiometric investigations⁵ and measurements^{4,6} of infrared spectra above 700 cm^{-1} .

Experimental Section

Preparations: ML_3X_2 (M = Co, Ni, or Zn; X =PYB or PYIM). These were precipitated by mixing

solutions of the corresponding hydrated metal salt and of ligand in 1:3 molar ratios. Where necessary the solutions were concentrated to precipitate the complexes and the solids were recrystallised. Details and analytical results are given in Table I. With 2-(2'-pyridyl)benzimidazole the nickel complexes were lilac and the cobalt(II) compounds were buff-coloured. Most of the nickel compounds with 2-(2'-pyridyl)imidazoline were beige in colour, but Ni(PYIM)₃(NCS)₂ was pale blue; the cobalt(II) complexes were again buff-coloured.

Tris[2-(2'-pyridyl)imidazole]nickel(II) Perchlorate Monohydrate. A solution of 1.1 g nickel perchlorate hexahydrate in ethanol (5 ml) was added to one of 2-(2'-pyridyl)imidazoline (1.3 g) also in ethanol (10 ml). The deep blue solution was evaporated almost to dryness, but no solid separated on cooling. Addition of water (10 ml) precipitated the complex, which was recrystallized by dissolving it in 50% aqueous ethanol (15 ml) and concentrating to small volume. The lilac solid was washed with water and dried in vacuo over P2O5 for 24 hrs. Anal. Calcd for C₂₄H₂₃Cl₂N₉NiO₉: C, 40.5; H, 3.3; N, 17.7. Found: C, 40.1; H, 3.3; N, 17.8%.

 $M(PYB)_2X_2$ (M = Co or Ni). Pale green nickel complexes [Ni(PYB):(NCS)2 was greyish white] and pink or buff cobalt(II) complexes were obtained as for the 3:1 compounds but using a 2:1 mole ratio of ligand and metal salt. Co(PYB)₂(NCS)₂ was obtained from an attempt to prepare Co(PYB)₃(NCS)₂. Details and analytical results are given in Table I.

These were obtained as Physical Measurements. described previously.⁷

Results

Nickel and cobalt(II) complexes of stoichiometries ML₃X₂ and ML₂X₂ were isolated (Table I) quite easily from acetone or ethanol solutions of the calculated molar proportions of the organic ligand and the requisite metal salt. Several of the compounds were obtained as monohydrates. Attempts to prepare Co-

(7) D.M.L. Goodgame, M. Goodgame, P.J. Hayward, and G.W. Rayner Canham, Inorg. Chem., 7, 2447 (1968).

D.M.L. Goodgame and A.A.S.C. Machado, Chem. Comm., 1420 (1969).
 A.A.S.C. Machado, Thesis, London University, 1971.
 B. Chiswell, F. Lions, and B.S. Morris, Inorg. Chem., 3, 110 (1964).
 T.R. Harkins, J.L. Walter, O.E. Harris, and H. Freiser, J. Amer. Chem. Soc., 68, 260 (1956).
 T.R. Harkins, and H. Freiser, J. Amer. Chem. Soc., 78, 1143 (1956).
 Lane, I. Nakagawa, J.L. Walter, and A.J. Kandathil, Inorg. Chem., 1, 267 (1962).

318		

Table I.	Preparative	details	and	analytical	results	for	some	complexes	of	cobalt(II)	and	nickel	with	2-(2'-pyridyl)-benzimida-
zole (PYI	B) and -imida	azoline	(PYI	(M).										

Complex	Solvent	Yield %	С	Analysis ^a , % H	N
Ni(PYB)3(BF4)2 Ni(PYB)3(ClO4)2 . H2O Ni(PYB)3[2 Ni(PYB)3[2 Ni(PYB)3[2 Ni(PYB)3[2 Ni(PYB)3(NCS)2	EtOH EtOH EtOH EtOH EtOH ^b EtOH	91 73 45 62 53 91	52.8 (52.85) 50.1 (50.1) 47.8 (48.1) 53.8 (53.8) 59.2 (60.4) 58.4 (59.1)	3.5 (3.3) 3.4 (3.4) 3.2 (3.0) 3.45 (3.4) 3.85 (3.8) 4.3 (3.6)	15.6 (15.4) 14.5 (14.6) 14.0 (14.0) 15.7 (15.7) 17.5 (17.6) 19.8 (20.2)
$\begin{array}{l} Co(PYB)_{3}(BF_{4})_{2} . H_{2}O\\ Co(PYB)_{3}(ClO_{4})_{2} . H_{2}O\\ Co(PYB)_{3}I_{2}\\ Co(PYB)_{3}Br_{2}\\ Co(PYB)_{3}Cl_{2} \end{array}$	EtOH EtOH Me₂CO/DMP ^{c.d} Me₂CO/DMP ^c EtOH ^c	64 85 70 62 47	51.7 (51.6) 49.9 (50.2) 48.3 (48.1) 53.5 (53.7) 59.0 (60.4)	3.6 (3.5) 3.5 (3.4) 3.3 (3.0) 3.5 (3.4) 4.0 (3.8)	15.8 (15.0) 14.7 (14.6) 14.1 (14.05) 15.9 (15.7) 17.7 (17.6)
Zn(PYB)3(BF4)2 . H2O Zn(PYB)3(ClO4)2	EtOH ^b n-BuOH	68 82	51.8 (51.3) 50.7 (50.9)	3.7 (3.5) 3.8 (3.2)	14.6 (14.9) 14.5 (14.8)
Ni(PYIM) ₃ (BF ₄) ₂ Ni(PYIM) ₃ (ClO ₄) ₂ Ni(PYIM) ₃ I ₂ Ni(PYIM) ₃ Br ₂ Ni(PYIM) ₃ Cl ₂ Ni(PYIM) ₃ (NCS) ₂	EtOH EtOH Mc2CO/DMP [†] EtOH/DMP [‡] Mc2CO/DMP	52 43 59 67 35 32	42.7 (42.8) 41.2 (41.4) 37.7 (38.2) 42.65 (43.7) 49.5 (50.4) 50.5 (50.7)	4.0 (4.0) 3.8 (3.9) 3.5 (3.6) 4.1 (4.1) 4.9 (4.75) 4.3 (4.4)	18.65 (18.7) 18.0 (18.0) 16.6 (16.7) 18.9 (19.1) 21.6 (22.0) 24.0 (25.0)
Co(PYIM) ₃ (BF ₄) ₂ Co(PYIM) ₃ (ClO ₄) ₂ Co(PYIM) ₃ I ₂	i-PrOH i-PrOH ^b EtOH	59 72 66	43.3 (42.9) 41.3 (41.4) 39.2 (38.4)	4.5 (4.0) 4.0 (3.9) 4.2 (3.6)	18.7 (18.7) 17.8 (18.0) 17.2 (16.7)
Ni(PYB) ₂ Cl ₂ e-h Ni(PYB) ₂ Br ₂ Ni(PYB) ₂ I ₂ Ni(PYB) ₂ (NCS) ₂	EtOH/DMP ^d Me ₂ CO/DMP ^d Me ₂ CO/DMP ^d EtOH	62 50 33 71	53.5 (52.6) 47.25 (47.4) 41.9 (40.9) 54.3 (55.1)	3.8 (3.7) 3.3 (3.0) 3.0 (2.6) 3.7 (3.2)	15.6 (15.0) 13.6 (13.8) 11.5 (12.0) 19.9 (19.8)
$\begin{array}{l} Co(PYB)_2Cl_2 \stackrel{e\cdot i}{ c } \\ Co(PYB)_2Br_2 \\ Co(PYB)_2I_2 \\ Co(PYB)_2(NCS)_2 \end{array}$	EtOH ^d EtOH ^b EtOH ^b EtOH	52 65 20 83	53.4 (53.5) 47.2 (47.4) 41.2 (41.0) 55.1 (55.2)	3.7 (3.7) 3.25 (3.0) 2.8 (2.6) 3.5 (3.2)	15.2 (15.6) 13.7 (13.8) 12.0 (11.95) 21.1 (19.9)

^a Calcd. values in brackets. ^b Recryst. from EtOH. ^c DMP = 2,2-dimethoxypropane. ^d Recryst. from MeOH/EtOH. ^e Dried at 120°C in vacuum for 24 hours. ^f An oil formed initially, which solidified on heating and stirring. ^g Recryst. from n-BuOH/-DMP. ^h Analytical figures are for monohydrate. Wt. loss on drying: found, 3.0%; Calcd. 3.3%. ⁱ Analytical figures are for monohydrate. Wt. loss on drying: found, 4.1%; Calcd. 3.3%.

(PYB)₃(NCS)₂ gave only the analogous 2:1 complex, although a 3:1 compound was obtained with nickel thiocyanate.

Electronic Spectra and Magnetic Properties. Although the conditions required for a change from high- to low-spin for cobalt(II) are met with ligand fields only slightly greater than for corresponding types of iron(II) complex, none of the CoL_3X_2 compounds studied here shows spin-crossover behaviour. Their room temperature magnetic moments (Table II) are nearly all in the range 4.9 ± 0.15 B.M., as frequently found⁸ for high-spin six-coordinate cobalt(II). The moments of the various salts of the $Co(PYB)_{3}^{2+}$ cation change very little with the counter anion, but there is a marked anion depndence of the moment of the $Co(PYIM)_{3}^{2+}$ ion, and for two compounds, Co- $(PYIM)_{3}X_{2}$ (X = BF₄ and I) the room temperature moments are quite low for six-coordinate cobalt(II). Despite its low room-temperature moment (4.47 B.M.), Co(PYIM)₃(BF₄)₂ was found to obey the Curie-Weiss law over the range 100-301 K with a relatively small Weiss constant (22°) (Table III). There is therefore no clear evidence that the relatively low moments observed for this compound, and, to a smaller extent, for the iodo-analogue, arise from spin-crossover behaviour. Indeed, the behaviour observed is similar to that found⁸ for Cophen₃(ClO₄)₂, which has a moment of 4.66 B.M. at room temperature, decreasing to 4.25 B.M. at 78 K. The lower moments of the $Co(PYIM)_3^{2+}$ salts compared with those of their PYB analogues may arise from a greater distortion of the ligand field with consequent of the ⁴T_{1g} level. However, these is no electronic spectral evidence for this (see Although it is, in principle, possible to below). obtain a quantitative measure of the ligand field distortions in six-coordinate cobalt(II) complexes from magnetic susceptibility data,⁸ we have not attempted to do this for the compounds studied here, as the employment of average susceptibility measurements usually results in a good deal of ambiguity in the derived parameters.8

The nickel complexes are all high spin, and even in the case of Ni(PYB)₂I₂ the distortion of the ligand field from O_h symmetry is insufficient to cause the formation of a spin-singlet ground state.

The electronic spectra of the 3:1 nickel compounds show no measurable splitting of the bands arising from the spin-allowed transitions (Table II). In each case the v_1 band (${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ in O_h) has a shoulder on

(8) B.N. Figgis, M. Gerloch, J. Lewis, F.E. Mabbs, and G.A. Webb, J. Chem. Soc. (A), 2086, (1968).

Compound	Leff	Band Max., cm ⁻¹
Ni(PYB),X,	(B.M.)	
$X = BF_4$	3.28	11.400. ~13.000 sh. 18.300. ~22.800 sh
ClO, 4	3.17	11,500, \sim 12,900 sh, 18,000, \sim 22,600 sh, \sim 23,900 sh.
I	3.33	11.000, ~ 12.900 sh. 18.000, ~ 22.500 sh. ~ 23.700 sh.
Br	3.24	10,900, $\sim 12,800$ sh, 18,200, $\sim 22,600$ sh, $\sim 23,800$ sh.
Cl	3.20	11.200, \sim 12.900 sh, 18.200, \sim 22.500 sh, \sim 23.800 sh.
NCS	3.03	11,200, \sim 12,500 sh, 18,100, \sim 22,400 sh
Ni(PYIM) ₁ X ₂		
$X = BF_4$	3.26	$11.400, \sim 12.700$ sh. 17.900
ClO,	3.12	$11.400. \sim 12.500 \text{ sh}$, 18.000
I	3.08	11.400. b 18.200
Br	3.15	11.400. b 18.300
Cl	3.03	$11.400. \sim 12.500 \text{ sh}$ 18.100
NCS	3.13	10,600, ~12,900 sh, 17,500
Ni(PYB),X,		
X=Cl	3.12	~8.900 sh. 9.800 15.400. ~25.000 sh. s
Br	3.12	~ 8.100 sh. 9.900, 15.900, ~ 25.000 sh. vs
I	3.22	~ 8.500 sh. 10.000, 16.600, ~ 25.000 sh. vs
NCS	3.22	10,200, 12,700 wsh, 17,200, ~21,600 sh, w.
Co(PYB) ₂ X ₂		
$X = BF_4 a$	4.88	10.200. \sim 18.800 sh. \sim 20.700 sh. \sim 22.200 sh
ClO, a	4.92	$10,300, \sim 18,500 \text{ sh}, \sim 20,800 \text{ sh}$
I	4.81	$10.000, \sim 18,500 \text{ sh}, \sim 20.600 \text{ sh}, \sim 22.100 \text{ sh}$
Br	4.88	9.900. $\sim 18,500$ sh. $\sim 20,600$ sh. $\sim 22,200$ sh
C1	4.89	9,900, $\sim 18,700$ sh, $\sim 20,600$ sh, $\sim 22,100$ sh
Co(PYIM) ₃ X ₂		
$X = BF_4$	4.47	10.600, ~ 18.300 sh. ~ 20.000 sh. ~ 23.300 sh
ClO4	4.80	10,200, $\sim 18,400$ sh. $\sim 19,900$ sh. $\sim 22,700$ sh
I	4.67	10,500, \sim 18,200 sh, \sim 20,000 sh, \sim 23,200 sh
Co(PYB)2X2		
X=Cl	4.84	8,700, (14,800 wsh) ^c , 19,300, 20,200 sh
Br	4.84	8,500, (13,900 wsh) c 19,000, 19,800 sh
I	4.62	8,700, (13,000w) ^c , ~19,100 sh, 19,900
NCS	5.02	$9,700, \sim 18,600 \text{ sh}, 20,400, \sim 22,100 \text{ sh}$
Ni(PYI)3(ClO4)2 a.d	3.14	11,400, \sim 12,700 sh, 18,300

Table II. Diffuse reflectance spectra (4000-25,000 cm⁻¹) and room temperature magnetic moments of some complexes of cobalt(II) and nickel with PYB and PYIM.

^a As monohydrate. ^b Asymmetric to higher energy. ^c Band probably due to tetrahedral cobalt(II) impurity (see text). ^d PYI = 2-(2'-pyridyl)imidazole.

Table III. Temperature dependence of magnetic moments.

	Co(PYB) ₃ (BF ₄) ₂	. H₂O		Co(PYIM) ₃ (BF ₄) ₂		Co(PYIM) ₁ (ClO ₄) ₂					
Т⁰К	10 ³ . χ _m	$\mu_{eff} a$	Т⁰К	10 ³ . χ _m	μett	Т°К	10 ³ . χ _m	μ _{eff}			
297	10.17	4.91	301	8.28	4.46	299	9.75	4.83			
294	10.02	4.85	298	8.44	4.48	296	9.48	4.74			
227	12.66	4.79	278	9.00	4.47	245	11.90	4.83			
180	15.74	4.76	213	11.41	4.41	208	13.71	4.78			
140	19.59	4.68	182	13.12	4.37	170	16.17	4.69			
101	25.63	4.55	138	16.95	4.33	142	19.37	4.69			
			100	21.99	4.19	106	25.31	4.63			
	$\theta b = 26^{\circ}$			$\theta = 22^{\circ}$			$\theta = 12.5^{\circ}$				

^a B.M.; calc. from Curie Law. ^b Defined by $\mu_{eff} = 2.83 [\chi_m(T+\theta)]^{w}$.

its higher energy side, but this is of very low intensity and almost certainly arises from a transition to the ${}^{1}E_{g}(D)$ level. Only two of the three spin-allowed bands were observed; that at highest-energy was obscured by very intense, electron transfer absorption above 26,000 cm⁻¹. (The ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$ (F) transition is expected to lie at *ca.* 29,000 cm⁻¹ in these complexes). The Dq values of ca. 1120 cm⁻¹ for Ni-(PYB)₃²⁺ and 1140 cm⁻¹ for Ni(PYIM)₃²⁺ are close to the critical values at which spin-crossover occurs for the analogous iron(II) complexes.⁹ They are, however, at the low end of this critical Dq region (compare e.g. $Nien_3^{2+}$ has Dq 1120 cm⁻¹ whereas $Feen_3^{2+}$ is high-spin).

In contrast to the 3:1 compounds the Ni(PYB)₂X₂ complexes, where X=Cl, Br, or I, show a splitting of the v_1 electronic band (Figure 1, Table II). These splittings are much smaller than those found^{10,11} for

(9) S.M. Nelson and J. Rodgers, J. Chem. Soc. (A), 272 (1968).
(10) D.M.L. Goodgame, M. Goodgame, M.A. Hitchmann, and M.J. Weeks, J. Chem. Soc., (A), 1769 (1966).
(11) D.A. Rowley and R.S. Drago, Inorg. Chem., 6, 1092 (1967).

Goodgame, Machado | Substituted Imidazole Complexes

a range of *trans*-NiL₄X₂ compounds, where L=pyridine or a related amine ligand (in Nipy₄Br₂, for example the splitting of the ${}^{3}T_{2\kappa}$ level is ca. 3000 cm⁻¹). Accordingly it seems likely that the 2-(2'-pyridyl)benzimidazole complexes have *cis*-configurations.

Figure 1. Reflectance Spetcra of: a) $Co(PYB)_3(ClO_4)_2$. H₂O; b) $Co(PYB)_2Cl_2$; c) Ni(PYB)_3Cl_2.

The electronic spectral behaviour of the cobalt(II) complexes resembles that of their nickel analogues. For both 3:1 and 2:1 compounds the ${}^{4}T_{1g} \rightarrow {}^{4}T_{2g}$ transition remains unsplit. The lack of splitting for the Co(PYB)₂X₂ complexes again differs appreciably from the situation with other cobalt(II) halide compounds of the type trans-CoL₄X₂.¹² Assignment of the bands at higher frequencies in the 3:1 complexes is complicated by the presence of strong electron transfer absorption above $\infty 25,000$ cm⁻¹, which causes the d-d bands in this region to appear only as shoulders, and also by the fact that for Dq values in the 10,000-12,000 cm⁻¹ region the ${}^{4}A_{2g}$ and ${}^{4}T_{1g}$ levels cross.¹³ Moreover, transitions to either, or both, of two levels $({}^{2}\Gamma_{6}, {}^{2}\Gamma_{8})$ derived from spin-doublet free ion terms may be expected in this region, as they can gain intensity from nearby spin-allowed transitions.

For lingand fields of $Dq \sim 860 \text{ cm}^{-1}$ the v_2 transitions is expected¹³ to be clearly on the low energy side of the v_3 band, and the component at ca. 19,000 cm⁻¹ for the halide complexes is within the energy range expected for this transition. However, the observed component seems to be too intense for this assignment as v_2 , as this transition is normally quite weak.

The visible bands of the 2:1 complexes are displaced to somewhat lower energies and they are better resolved from the electron transfer absorption (Figure 1).

The very weak shoulder or band found in the 13,000 - 15,000 cm⁻¹ region for each of the halo-complexes Co(PYB)₂X₂ might correspond to spin-forbidden transitions to levels derived from the ²G free ion term, which are expected at ca. 15.000 cm⁻¹ in O_h symmetry. However, the energies of these weak bands increase in the order I < Br < Cl and this, and their

(12) C.D. Burbridge, D.M.L. Goodgame, and M. Goodgame, J. Chem. Soc. (A), 349 (1967).
(13) A.D. Liehr, J. Phys. Chem., 67, 1314 (1963).

position, suggest that they may be due to traces of tetrahedral cobalt(II) species (possibly CoX_4^{2-}) present as impurities.

Infrared Spectra

450-4000 cm⁻¹ region. - Chelation has previously been shown⁶ to have relatively little effect on the i.r. bands of PYB and PYIM in the region 650-5000 cm⁻¹, and the spectra of the free ligands and their complexes are also similar in the 450-650 cm⁻¹ region. However we noted one discrepancy from the reported⁶ spectrum of PYIM. The band at 1664 cm⁻¹ assigned by Lane *et al* as the C=N stretch, was not present in the spectrum of the pure ligand. Since it apppeared in the spectrum of the crude ligand but disappeared after successive recrystallizations it was probably due to the strong v(C=O) band of α -picolinic acid, used in the ligand preparation.

The v_1 anion bands of the complexes M(PYB)₂(NC-S)₂ are both markedly split (M = Ni 2122 vs, 2046 vs; M = Co 2110 vs, 2040 vs cm⁻¹). Such splitting is in accord with a *cis*-configuration, which is known to be present in Fe(bipy)₂(NCS)₂¹⁴ and which was suggested above for the halide complexes M(PYB)₂X₂ (M = Co,Ni) from their electronic spectra.

150-450 cm⁻¹ region - Assignment of low frequency i.r. spectra of compounds of this type, on an empirical basis, is complicated by several factors. Coordination may alter both the frequencies and the intensities of bands observed in the spectrum of the free ligand, and indeed, may activate a ligand mode. Moreover, particularly in systems involving chelating ligands, the absorption bands observed frequently originate from complex vibrational modes due to coupling between more than one simple metal-ligand, or internal ligand, mode. Thus the description M-N stretch for a band with marked M dependence in a series of [ML₃]ⁿ⁺ ions is generally a convenient simplification implying that M-N stretching contributes appreciably to that particular mode. It is in this sense that the various assignments are made in the following discussion.

In the case of the $[ML_3]^{2+}$ (M=Co, Ni, L=PYB, PYIM) salts reported here, assignment has been aided by recent studies of the effect of metal isotope replacement in related species with 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)¹⁵ and by force constant calculations¹⁶ for some M(bipy)Cl₂ compounds.

Three i.r. active M-N stretches are expected for a cation ML_3^{n+} where L is a bidentate, chelating amine of formal D₃ symmetry and for high-spin complexes of cobalt(II) or nickel these would be expected to lie below 400 cm⁻¹ and probably below 350 cm⁻¹.

In the case of the $M(PYB)_3X_2$ compounds (Table IV) coordination raises the frequencies of the 399 and 342 cm⁻¹ ligand bands and broadens or splits them, whereas the bands at 308 and 425 cm⁻¹ remain relatively unaffected. Significant changes occur in the 200 – 300 cm⁻¹ region. Comparison of the spectra

(14) E. König and K.J. Watson, Chem. Phys. Letters, 6, 457 (1970).
 (15) B. Hutchinson, J. Takemoto, and K. Nakamoto, J. Amer. Chem. Soc., 92, 3335 (1970).

(16) J.S. Strukl and J.L. Walter, Spectrochim. Acta, 27A, 223 (1971).

Table IV. Low frequency spectra (150-450 cm⁻¹) of PYB and M(PYB)₃X₂ (M = Co, Ni, Zn).

— РУВ —		M≈Co				M = Ni						M = 7n			
Rª	١R	$X = BF_{*}$	C104	I	Br	Cl	BF,	CIO,	1	Br	Cl	NCS	BF.	CIO,	Assignment d
	4258	424	428 416sh	426	425 415sh	424	423 414sh	425 415sh	424 415sh	425 415sh	426	426 417sh	423	424)
404w	399s	406	406	408	410	409	410sh	410sh	408sb	409sh	412sh		403br	403br	Σ.L.
350vw	342m	350br	356br	356br	355br	350br	365br	351br	361	361 355	358br	~ 358br	356 347	~356br	Ĵ
					318w		323w	323w	324w	325w	323w		511		?
317vw 298vw	308w	306w	306	305	305w	303w	308w,sh 296s,sh 290s	311w,sh 297s,sh 290s	307w,sh 293s	309w,sh 297s	308w,sh 296s	308w,sh 296s	306w	308w	L v(Ni-N)
275m	279m 268m	283s 277sh	284s 276sh	280	282	284	284s,sh	285s,sh	281s 271	287s 274	286s 273sh	287s 275sh	288sh 279s	294sh 28 3s	} L+v(Co-N)?
		253	253sh	250	250	244sh	.258	259	248	249	253	255			v(M-N)
206sh		244sh	242	233	232	234	219	220	218	219	218	~ 220	224s,br	224s,br	v(M-N)
189s	197w	~ 195 °	~ 190 °	189 ¢	190 °	~ 200 ^c	~ 200 s	196 c	194	195	~ 200 °	192 0	d	đ	L
151m	1 51 w	154	154br	153	157br	đ	1 62br	164	161vs	160vs	178vs,br 140br	168			L or X dep.

^a R = Raman; ^b L = ligand mode; ^c Very broad absorption, position ill-defined as near changeover point (200 cm⁻¹) between DM4 and GM3 spectrometers; ^d Not measured below 200 cm⁻¹.

Table V. Low frequency I.R. spectra (100-300 cm⁻¹) of some complexes $M(PYB)_2X_2$ (M = Co, Ni).

		M = Ni			— M=	- M=Co			
X = Cl	Br	I	NCS	C1	Br	I	NCS		
293s	292s	291	290	289s	286s	286s	286		
284s	281s	281	281 ~ 260sh	279s	277sh	278 s	276 ~252sh		
247s	245s	242	~ 252br 225	234 s	235s 222sh	238	240br ~ 228sh		
208s	212sh	~ 200	~ 185br	202	193	208 195	206 ~ 185br		
178br 145	160br	162w 132w	125br	170br 137	155br 112	155			
100br	112br	~ 100w	110sh		103br		100br		

of analogous nickel, cobalt, and, for two anions $(Cl0_4^- \text{ and } BF_4^-)$, zinc, complexes, with one another and with i.r. and Raman spectra of PYB leads to the assignments shown in the final column of Table IV.

All the complexes show strong absorption at 270 - 300 cm⁻¹, either as a single, broad band or as two or three well-resolved bands. The free ligand has medium intensity i.r. bands at 268 and 279 cm⁻¹ (the latter having Raman activity) but the nickel complexes all show an additional well-defined strong band, split in two cases, near 295 cm⁻¹. As this is not present for the cobalt and zinc complexes it is reasonably assigned to a v(Ni-N) mode. On the basis of the usual trend of metal donor stretching frequencies for octahedral first-row M²⁺ complexes, the corresponding absorption for the cobalt complexes probably overlaps the ligand bands at 270-280 cm^{-1} . The band for the zinc analogues is expected to be at much lower frequencies,¹⁵ and, in agreement with this, there is a strong band at 224 cm⁻¹ for each of the $Zn(PYB)_3X_2$ compounds. The cobalt and nickel complexes each show two other ν (M-N) bands, at ~220 and 248-259 cm^{-1} for nickel, and at 232-244 and ~250 cm⁻¹ for cobalt. These assignments of v(M-N) for the M- $(PYB)_{3}X_{2}$ complexes correspond well with those¹⁵ for $Ni(phen)_{3}X_{2}$ (243, 260, and 300 cm⁻¹ when X = ClO₄¹⁵).

One feature of the spectra of the nickel complexes which remains unexplained is the weak band near 324 cm^{-1} . This has a counterpart in only one of the other complexes, Co(PYB)₃Br₂. It is possibly an activated ligand band corresponding to the weak Raman band at 317 cm⁻¹ but this does not explain why it appears more consistently with the nickel complexes than with the others.

In the case of the $M(PYB)_2X_2$ compounds the bands involving M-doner atom stretches are found below 300 cm⁻¹ (Table V) but their asignment is not clearcut. Instead of the strong, and frequently complex, absorption found at 270-300 cm⁻¹ for the $M(PYB)_3X_2$ compounds the 2:1 complexes all show a well resolved doublet in this region quite similar in relative intensity to the pair of bands observed at 268 and 279 cm⁻¹ for the free ligand. However, in view of the small, but consistent metal dependence of the observed frequencies, and the v(M-N) values found for the $M(PYB)_3X_2$ compounds, it seems likely that these bands arise from modes with both ligand and v(M-N) character.

All the M(PYB)₂X₂ compounds show strong, and generally broad, absorption at 230-250 cm⁻¹. Identification of one of the two expected (if *cis*-octahedral) ν (M-NCS) bands for the isothiocyanates is relatively straightforward as each shows a strong shoulder at ~ 260 (Ni) or ~ 252 cm⁻¹ (Co) in addition to the main band at lower energy. There is also another component in each case at $\sim 225-230$ cm⁻¹ which may be the other ν (M-NCS) absorption, but a similar band is observed for Co(PYB)₂Br₂. An alternative possibility would be the strong, broad band at ~ 185 cm⁻¹ for each of the isothiocyanates.

For the chlorides the broad band at 234 (Co) and 247 (Ni) is much stronger than for the other halides and it may contain ν (M–Cl). The Ni–Cl stretch in Nipy₄Cl₂ has been reported¹⁷ to be at 246 cm⁻¹ but lower values (~190-200 cm⁻¹) have been observed¹⁸

Goodgame, Machado | Substituted Imidazole Complexes

P'	YIM —	M	[=Co			M=Ni						
Rª	IR	$X = BF_4$	ClO ₄	I	BF4	ClO4	I	Br	Cl	NCS		
375s		368w 352w	~ 370w	~ 370w	~ 370w ~ 370vw	372w	373w	372w	372w		L v ₂ (BF4 ⁻)	
265s	258s, br	267s, sh 254s, br 220w, sh	260s, br 246s, sh 224	270s 256s 223	291s 281s 268s, sh 240w	283s, br 241w	292s 279s 268s, sh 239w	292s 276s 264s, sh 238w	294s 280s 272s, sh 239w	274s, br 240	$ \begin{cases} \nu(Ni-N) \\ \nu(M-N) \\ or L \\ \nu(M-N) \end{cases} $	

Table VI. Low frequency spectra (200-400 cm⁻¹) of PYIM and (M(PYIM)₃X₂.

^a Raman.

.

for some other *trans*-NiL₄Cl₂ compounds. Other, strong X-dependent bands were found for the M-(PYB)₂X₂ complexes at ~170-180 cm⁻¹ (X = Cl) and ~150-160 cm⁻¹ (X = Br).

The i.r. and Raman spectra of PYIM are much simpler than those of PYB (Table VI) in the region 200-400 cm⁻¹. The strong 375 cm⁻¹ Raman band appears weakly in the i.r. spectra of the complexes,

(17) R.J.H. Clark and C.S. Williams, Inorg. Chem., 4, 350 (1965).
 (18) D.M. Adams and J.B. Cornell, J. Chem. Soc. (A), 884 (1967).

and the assignments of the M-N stretches for these last follow closely those of the analogous PYB compounds (Table VI).

Acknowledgments. A.A.S.C.M. thanks the Calouste Gulbenkian Foundation, Lisbon, and the Instituto de Alta Cultura, Lisbon for financial support and the Laboratorio de Quimica da Faculdade de Ciencias do Porto, Oporto for leave of absence.